设为首页 | 加入收藏 | 我要投稿|会员中心 |RSS
阅读文章

让开放式的课堂成为学生探究的舞台

[日期:2015-01-11] 来源: 网络 作者:河北教案网
    [现象一]:课堂是少数优生的“表演场”??紊?,只见少数优生非?;钤荆耗芪平淌Φ纳杓瞥绦虿悴闵钊?;小组合作时,他在指挥操作;互相讨论时,他在发表见解;全班交流时,他在汇报??翁贸闪松偈说谋硌莩?,而多数学生无形中成了听众、观众、接受者。
    [现象二]:安安静静的“秩序堂”??紊涎诮淌ι杓坪玫目蚣苤薪邮苤?,没有自己的独特见解。按部就班,完成了一项又一项的任务,没有学习激情,纯粹是为完成任务而学习,更谈不上自己去创造了。
    剖析原因主要是:课上教师包办太多,学生完全处于被动地位,其主体性严重缺失,使课堂呈现出一种封闭的格局。因此课堂中学生畅所欲言的激情没了,思维不活跃,没有较强的求知欲望。那么如何调动学生的学习热情,这就需要我们教师精心设计开放性的教学环节,如“创设情境——提出问题——探究交流——实践应用”等教学流程,让学生在学习中体验到自己是学习的主体,体验到成功的乐趣。
    苏霍姆林斯基曾说过:“人的心灵深处,总有一种把自己当作发现者、研究者、探索者的固有需要,这种需要在小学生精神世界中尤为重要?!闭饩鸵笪颐墙淌Σ欢衔瓷杼跫?,让学生由过去的机械接受向主动探索发展,满足学生精神世界的内在需要。
    在新课标的引领下,如何营造出一种开放的教育格局,现从如下几方面展开研究:
    一、课始开放,引导学生自主体验知识
    课始引导学生自主对新知识进行感知和实践,这是一种学生自能尝试、主动实践活动,它有利于获得对新知识的初步感性认识和表象基础,有利于针对不同学生的实际,体验成功的快感,以便激疑启思,燃起探求新知的欲望,使学生主动探索、主动学习。
    1、尝试生疑
    古人云:“学贵有疑”,“学则须疑”。疑是思之源,思是智之本。教师对学生的置疑要提倡,鼓励,要不断培养学生发现问题的能力,关键在教学中注意创设问题的情景,使他们产生发现问题和解决问题的浓厚兴趣,打开学生的思路,激发学生的认识冲突。
    [教学片段]:我校303班有男同学30人,女同学21人,体育课上,赵老师把24个实心球分给男女同学两大组进行练习,可以怎么分呢?男同学组、女同学组各能分到多少个?(小组讨论后交流)
    生1:可以平均分。
    生2:我认为这样不合理。
    怎样分才是合理的呢?学生产生疑惑,自然而然地进入新课。
    2、自能实践
    叶圣陶先生说过:教师要注意学生自力之锻炼,使之疑难能自决,是非能自辩,斗争能自奋,高精能自探。叶老的这些论述无疑给我们的课堂教学指明了方向。我们应力图改变过去那种学生处于被动接受状态的做法,而致力给学生创造解疑的条件,启发解疑的途径,引导学生通过自己的努力,去自行解决疑难的问题,以逐渐提高学生的“自能解疑”的能力,使他们“终身受用”。
    [教学片段]:小朋友这次我们去春游,需要租车,客运公司给我们提供了两种车:一种是大客车,限坐40人,租金每辆每天700元,另一种是中巴车,限坐25人,租金每辆每天500元。(根据提供材料,小组讨论,设计租车方案,在小组汇报的基础上提炼出最佳租车方案。)
    3、以趣促学
   “兴趣是最好的老师?!鼻〉钡奶嵛士梢约し⒀靶巳?,使学生产生求知欲,成为“好知者”,自觉投入学习。
    [教学片段]:先让学生想象一张白纸的厚度,告诉他们只有0.083毫米,三次对折后的厚度是0.083×2×2×2 = 0.664毫米,还不到1毫米。假如对折50次,那么它的厚度是多少?会不会比桌子高,会不会比教学楼还高?学生们则立刻活跃起来,争论激烈,当教师宣布结果:“比珠穆朗玛峰还要高!”学生惊讶不已,迫不急待地想知道是如何列式计算的。这就把枯燥无味的数学内容变得趣味横生,引起了学生学习兴趣,发动了学生思维之弦,激发了学生思考之情。
    [反思]:课始给学生创设一个民主、开放的教学氛围,放开学生,让学生积极主动去发展,敢于说出自己的想法做法,感到不受任何约束。通过针对性的尝试生疑、自能实践、以趣促学,激发了学生的学习兴趣,调动了学生内心对数学探索的欲望,充分发挥了学生的智力潜能。
    二、课中开放,引导学生主动参与过程
    在数学教学中,学生形成知识的过程是师生双方交互作用的历程。教师是组织者和引导者,而非解题者;学生是主动探索知识的建构者,而非只是模仿者。在数学课堂中,师生双方“捕捉”对方的想法,双方产生积极的互动。教师应积极了解学生思考的情况,注意学生的学习过程。教师在学习过程中会经常问学生:“你是怎么知道这个结果的?”而不只是要求学生模仿和记忆。教师应了解学生真实情况作为教学的实际出发点,为学生的学习活动提供一个良好的环境,真正发挥引导者的作用。
    1、激发主体 主动参与
    毛主席曾说过:“使学生生动活泼主动发展,关键是‘主动’二字”。如果学生的主观愿望里有获取知识的渴求,那么学习已不再是加重学生负担的砝码。我们搞愉快教育的改革和实验,就是要变苦学为乐学,达到苦与乐的辩证统一。
    如设计认识常用计量工具这一环节时,我是这样引导的:
    1、录象引入。
    师:电脑里有几个录像片段,我们一起来看看好吗?
    2、秤的认识。
    师:你看到了什么?你认识这些秤东西的工具吗?还认识别的秤吗?它们能帮助我们解决生活中的什么问题呢?
    师:网上也有一些关于秤的知识,有兴趣看吗?播放网上信息。
    学生在不知不觉中融入到知识的探讨中,在轻松和谐的学习氛围中成长着。
    2、引发主体 主动探求
    教学中有效的运用启发,是培养学生自我学习的策略,真正使教师从“独奏的角色过渡到“伴奏者”的角色,引导学生自我发展,实现“教是为了不教”。
    如:教学商不变的性质这一课时,我是这样启发的:
    师:(板书12÷6=2)今天我们就先来研究这道算式。如果我们只改变这道算式中的被除数或除数,考 虑一下,商可能会怎样?
    生l:商变了。
    生2:如果只改变被除数,被除数变大,商就会变 大;被除数变小,商就会变小。
    生3:如果只改变除数,除数变大,商就会变??;除 数变小,商就会变大。
    师:同学们以前学的知识掌握得真牢靠!如果我 们同时改变这道算式的被除数和除数,商可能会怎样? 这个问题可能有点难度,给同学们2分钟时间,举一些 例子试试,待会儿我们来交流,好吗?
    学生独立活动2分钟。
    生l:我让被除数和除数同时除以2,算式变成了 6÷3=2,商不变。
    生2:我让被除数和除数同时加上1,算式变成了 13÷7=l……6,商变了。
    ……
    随着交流的进程,教师在黑板上提炼出如下信息:
    师:请大家来观察“商不变”的这一组算式。商既然没有随着被除数、除数的变化而变化,这其中一定包 含着某种规律,那么这个规律是什么呢?同学们能不 能进行一些大胆地猜想?
    随着学生的回答,教师在黑板上整理成如下板书:师:现在我们有四种猜想,你认为哪种猜想可能性 更大一些?
    生:①、②的可能性大一些。
    生:①、③的可能性大一些。
    ……
    师:怎样才能知道哪种猜想是正确的呢?选 择一个你们认为可能性最大的假设,自己举例进行实 验,把实验过程填写在课前发给你们的《实验记录》上。 随着学生的交流,黑板上只留下了①、②两种 猜想。
    师:谁能把这两句话合并成一句话?
    生:被除数和除数同时乘或除以一个相同的数,商 不变。
    3、启发主体 主动完善
    要使学生把所学的知识在头脑中形成一个完整的体系,就应要求学生把学到的知识融合进自己原有的知识体系中去,变成自己的东西,使学生能发表个人独创性的见解,彼此交流学习方法或感受。仍以刚才的话题为例,紧接着我们可以这样引领:
    师:刚才,我们以12÷6=2为例,得出了一条规律,如果要知道这条规律是否具有普遍性,我们还需要 怎样? 生:要验证! 师:说得好!请每个同学都任意写一个除法算式, 把它的被除数和除数同时乘相同的数,看看结果变没 变?把它的被除数和除数同时除以一个相同的数,看 看结果变没变?开始行动吧!
    生:(举例)
    师:刚才,我看到了有一位同学写了这样的一道算 式:48÷6=(48×0)÷(6×0)=0÷0。这位同学愣在 那儿没法下手了,对此,你有何高见?
    生:这道算式变化后变成了“0÷0”,而除数是不能是0的,我想刚才的结论应添上“0除外”三个字。
    师:是啊!添上“0除外”这个限制条件,我们总结 出来的规律就具有普遍性了。这条规律在数学上就叫 “商不变的规律”。
    4、开发主体 主动发展
    学习的效益,体现在会不会应用、会不会创造上。唯有如此,才能理解“知识就是力量”的含义,才能唤起“再学”的欲望,才能达到着力培养主体能力的境界。
如:小朋友学了8的乘法口诀,可试着问道:你觉得在实际生活中,有哪些地方也用到8的乘法口诀呢?
    师:你们知道一只螃蟹几条腿,精彩文章尽在小学课堂网,2只螃蟹呢?你能编一首儿歌吗?如:一只螃蟹8条腿,2只螃蟹16条腿,3只螃蟹24条腿,……8只螃蟹64条腿。(学生做拍手游戏)
    [反思]:通过课中各环节的开放,可以看出学生不再是知识的被动接受者,把学习的主动权还给了学生,能充分发挥学生的潜能,使学生从不同的侧面找到问题的答案,提高了学生解决问题的能力,并享受到成功的愉悦。
    三、课末开放,引导学生积极迁移知识
    课后引导学生主动参与认识的延伸练习,能培养学生自觉地巩固、深化和运用课堂所学的知识、能力和习惯,学会巩固、运用知识的科学方法。
    1、形成知识组块
    课末小结要简练易懂,要有浓缩的“提炼”艺术,在设计过程中,应抓住最本质最主要的内容,做到少而精,要简明扼要。
    [教学片段]:师:同学们回答得很好,今天学习的有关倍的知识实际上就是在过去的几个几的知识上发展的。解答这样的题目,要弄清哪几个问题?
   (学生回答后板书)
   (1)以什么为标准;
   (2)什么和什么比;
   (3)有几个几;
    (4) 就是几倍;
    2、发现知识规律
    课堂教学是师生的双边活动,教师的“教”是为了诱导学生的“学”。在教学过程中,我常根据教材的内在联系,利用学生已有的基础知识,引导学生主动参与探索新知识,发现新规律。这对学生加深理解旧知识,掌握新知识、培养学习能力是十分有效的。
    [教学片段]:通过刚才的摸球活动,小朋友发现:3白1黑拿出来的情况是这样的,拿出的白棋子的次数多,大约是黑棋子次数的3倍。
   (1)根据发现的规律连一连。
    从下面5个箱子中分别摸一个球,结果是哪个
    8白2红        可能是白球           10白
    5白5红        一定是白球           10红
    2白8红        一定不是白球         
    很少是白球
    白球的可能性很小
   (2)应用规律解决实际问题。
    两个文具超市为了招揽顾客展开了激烈的战斗:凡在本店买任何一件文具(10元以上)即可参加“开心转盘”的摇奖活动 

    3、促进知识运用
    在寻找规律环节中,教师先请学生独立观察思考,探索规律,并在小组内交流自己的发现,由此促成了多种发现的产生。接着让学生独立探索图形的排列规律,在学生思考后组织交流,大大增强了学生的表现欲,他们努力想探索出不同规律。学生在观察中思考,在交流中思考,在探索中思考,获取新的知识,充分发挥了学生的积极性。找到规律后,联系生活找规律这一内容,将数学与生活紧密联系在一起,发散了思维,拓宽了学生知识面,使课堂内容得到了延伸,增强了学生再学习、再创造的信心。
    [教学片段]:师:在生活中,按规律排列的东西还真不少!那么,让我们用今天学到的知识一起来打扮教室好吗?
    师:老师这里准备了彩带、彩旗、小动物和美丽的小星星,四人小组先商量一下你们想用什么材料来打扮教室,再由小组长上来领取东西。要求用今天我们学的按规律来摆放这些东西,开始。
   (四人小组先商量,再由组长上讲台领取东西,然后开始以四人小组为单位,按规律摆放东西,打扮教室。)
    师:教室漂亮吗?(漂亮)好,那么大家互相参观一下,说说其他组的规律,或是提一些更好的建议。
   (学生参观,相互说规律提建议。)
   [反思]:通过课末开放,适时地组织和指导学生归纳知识和技能的一般规律,有助于学生更好地学习、记忆和应用,发挥知识系统的整体优势,并为后续学习打好基础。特别是通过课堂内容的延伸练习,增强了学生再学习、再创造的信心。
由此可见,数学的学习过程是一个学生亲自参与的、生动活泼、主动发展富有个性的过程。学生是学习活动的主体,教师应给学生搭建探究的舞台,给学生提供足够的时间和空间,去对有关的数学学习内容进行探索、实践和思考。将思维聚焦在探究的方法上,让学生经历数学知识的形成和发展过程,使学生通过各种数学活动,在掌握基础知识和技能的同时,初步学会从数学的角度去观察事物和思考问题,产生浓厚的学习数学的愿望和兴趣,从而促使学生知识尽量自主生成,使课堂教学呈现出生命的活力。
    参考文献:1、《新课程标准解读》
              2、《中小学数学》2005年1---10期
              3、《现代中小学教育》2005年1---10

 
相关文章
    无相关信息
猜您感兴趣
新闻 网页 音乐 贴吧 图片

互联网www.sogou.com